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Synthetic Aperture

• Can create large 
effective apertures 
through motion

• Synthetic Aperture 
Radar (SAR) moves 
the platform + radar to 
view static targets

• Inverse Synthetic 
Aperture Radar 
(ISAR) uses static 
radar to view moving 
targets 

Pulse Repetition Rate (PRF):
Rate at which pulse are Transmitted

Introduction and Motivation
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W• Motion of the target causes a 
Doppler shift that depends on the 
angular velocity of the target motion 
and distance from center of rotation

• Like moving a SAR radar across the 
sky by W as target is rocked by 
waves (faster)

• Excellent for a moving (rocking) 
target at extremely long ranges

• Allows imaging and target 
recognition from closer to standoff 
ranges and lower grazing angles

ISAR: Inverse Synthetic Aperture Radar

Actual	ISAR	
radar	angle

Pulse Repetition Rate 
(PRF)

Introduction and Motivation
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Introduction and Motivation (3)
• Radar systems sense the environment by transmitting and 

receiving waveforms sampled through a finite effective aperture
– Aperture is created in two primary ways:

i. Motion between radars and targets resulting in relative aspect changes 
(which manifests in terms of Doppler structure of backscattered signal)

ii. Distributed sensor structures (for example: Multi-static scenarios)

• Typically in radar systems the aperture is densely sampled; for 
example:
– Large CPI (Coherent Processing Interval i.e. observation time) in ISAR 

imaging
– Large aperture created due to motion of the aircraft in SAR imaging

• Nevertheless, even in such scenarios there is a need for enabling 
radar systems to perform robust inference/imaging when the 
aperture is sparse
– We refer to such scenarios as ‘Sparse Sensing’ i.e. limited number of 

pulses fall on a target of interest
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Motivation for Sparse Sensing Radar Imaging
• Example#1: ISAR (Inverse Synthetic Aperture Radar) Imaging

– Fundamental Problem in ISAR Imaging: Motion estimation errors due to 
complexities in motion dynamics

– When viewed from the lens of Fourier processing and Backprojection, we 
need Large CPI so that we have a large enough aperture to form a high-
quality image

– However motion of target can be very complex and non-linear in large 
CPI—motion compensation (mocomp) more difficult

– Solution: Imaging in Small CPI (sparse aperture) so that the target motion 
can be assumed to be linear i.e. simpler mocomp—however alternatives to 
Fourier based imaging is needed

• Example#2: SAR (Synthetic Aperture Radar) Imaging
– Strip-map SAR modality is capable of imaging a large coverage area; 

however the number of pulses that interrogate any particular target of 
interest is likely relatively small

– By enabling robust inference via ‘Sparse Sensing Radar Imaging’ 
techniques, particular targets of interest can be imaged at higher 
resolution than otherwise possible via backprojection techniques
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Motivation for Sparse Sensing Radar Imaging

• Example#3: Image-While-Scan (IWS)
– The concept here is that a Radar is in scanning mode (i.e. 

rotating antenna) and updates the surface picture with each 
sweep of the antenna—such that it images multiple targets 
without the need to invest separate dwell times for each 
individual target

– The difficulty here is that we have only a limited number of 
pulses to from which to form Doppler spectrum at each range-
bin

– This is an example where there the Sparse Sensing scenario 
directly applies
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• From the preceding examples it is clear that there is a need to 
develop statistical inference techniques that can perform Radar 
Imaging under the constraints of Sparse-Sensing—for e.g. i) limited 
number of pulses sampling different targets aspects or ii) limited 
number of spatially distributed sensors)
‒ Key idea: to systematically incorporate prior (probabilistic) knowledge 

of the scene structure into the inference process

• Importantly, an added benefit of our approach—i.e. exploiting prior 
knowledge of scene structure—is that the resulting methods are 
potentially useful even when a dense number of pulses impinges on a 
target interest
‒ Especially where there is significant degradation of the received 

signal due to corruptions arising from environmental and other 
factors

‒ Computational complexity of the inference technique is an issue 
however

Motivation for Sparse Sensing Radar Imaging
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Overview

• Traditional approach to scene estimation etc. is to employ the
fundamental tools of matched filtering and various pre-
processing steps followed by Fourier spectral analysis

Scene and 
Environment

Pre-
Processing

Backproject/
IFFT

Tx. Waveform

SAR, ISAR, Sonar, CAT scan…

Extracted
Information

• Strategy:
Ø Keep the Pre-processing (range migration compensation etc.) in-

tact i.e. unchanged
Ø Replace the Backprojection/IFFT block with ‘something better’

Domain Expertise
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Overview (2)
• Implicitly, Fourier based spectral analysis represents the data in 

Fourier bases.  However wavelet based representations of 
signals have significant advantages over Fourier 
representations:
‒ Radar scenes have sparse structure in wavelet representations
‒ Radar scenes reveal a rich statistical structure in wavelet

representations

• Sparsity-based reconstruction algorithms (such as in
Compressive Sensing (CS)) try to exploit the sparse structure of
such signals in order to better extract information from the
measurements
‒ However sparsity is only a crude measure of the probabilistic 

structure of radar images. Thus the challenge is to come up with 
novel ways of incorporating informed prior models for radar scenes 
into an elegant optimization framework
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System Setup and Problem Formulation

• Conditioned on radar pre-processing steps (mocomp etc.), the correct 
abstraction of the radar imaging problem (in any modality such as 
ISAR, SAR etc.) is embodied in the Multistatic Radar Imaging setup:
– M radar sensors interrogating the scene/target at different angles
– Target scene is assumed to be stationary

Target
Sensor

Fig. Multistatic Radar Imaging System
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Radar System (2)

• Focus on single radar return first
• Assume discrete-time system (i.e., inherent sampling time, 𝑇")
• Discrete range index, r
• Aligned at a positive angle 𝜃$ with the image axes  
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Radar System (3)

• Transmit waveform

• Power constraint

• Reflectivity Function

• Response from single image 
point

Fig. Radar Imaging System

Fig. Image PointTwo-way time 
delay

r
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Radar System (4)

• Response from constant range (a.k.a. iso-range 
contour)

• Total response

• Discrete Radon transform

Fig. Constant- Range Cut

Fig. Total Response

Two-way time delay 
from center of image 𝜃$
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Image Structure

• Define matrix version of image, 𝑮

– : number of rows and columns in the image

• Construct image on a linear basis (a.k.a. sparse approximation)
– For e.g. use two-dimensional wavelets

• Implies that the image can be written as

– is a dictionary of basis vectors (e.g. wavelets etc.)
– is a random vector of wavelet coefficients

• Distribution of     will be discussed later
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Monostatic Response

• Using the sparse approximation model for the image, the 
total response in vector form is

–
– is a path loss coefficient
– is the matrix form of the Radon transform
– is an additive white Gaussian noise vector

•

• We can now extend this system to the multistatic scenario



18

Multistatic Response
• Multistatic system can be broken 

into bistatic pairs
o Simpler to focus on bistatic case

• Interested in multiradar setup
o Only Radar transmits, all others 

receive
o We assume RCS fluctuations are 

isotropic

• Using previous system model, the 
response at Radar 

• Using a theorem from [Crispin59], 
we also have the return at Radar 

Fig. Bistatic Radar System
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Multistatic Response (2)
• For simplicity, define 𝑹𝒊 = 𝑎$𝑹𝜽𝒊 and form the convolution 

matrix 𝑿: 

• Simplified system model

• This can be done for all bistatic pairs
o Only matters for pairs involving the transmitting radar array

𝒚$ = 𝑿𝑹$𝜱𝒄 +	𝒏𝒊
𝒚2 = 𝑿𝑹2𝜱𝒄 +	𝒏𝒋
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Multistatic Response (3)
• All responses

• Gathering all M returns together, we form the overall response:

o 𝑿4 is a block diagonal matrix with M copies of 𝑿	down the diagonal
o 𝑹 =	 𝑹𝟏𝑻, … , 𝑹𝑴𝑻

𝑻

o 𝒏 =	 𝒏𝟏𝑻, … , 𝒏𝑴𝑻
𝑻

o 𝚿 = 𝑿4𝑹

𝒚; = 𝑿𝑹;𝜱𝒄 +	𝒏𝟏.
.
.

𝒚= = 𝑿𝑹=𝜱𝒄 +	𝒏𝑴

𝒚 = 𝑿4𝑹𝜱𝒄 + 𝒏

𝒚 = 𝚿𝜱𝒄 + 𝒏⟹
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Problem Formulation

• We have the following mathematical model for the radar system:
𝒚 = 	𝜳	𝜱		𝒄		 + 𝒗	 = 	𝜳	𝑰	 + 𝒗	 (1)

where,
𝒚 ∈ ℝ𝒎 is the Measured signal (after pre-processing)
𝜳 ∈ ℝ𝒎𝒙𝒑 is the effective Sensing matrix (i.e. Waveform)
𝜱 ∈ ℝ𝒑𝒙𝒏 is the Dictionary matrix in which the image is represented 

(Wavelets, Fourier, Time-Frequency Bases, etc.)
𝒄 ∈ ℝ𝒏 is the underlying coefficients to be estimated (the 

resulting Radar Image Estimate is 𝐈 = 𝜱𝒄)
𝒗 ∈ ℝ𝒏 is the interference in the measurements due to both 

clutter and noise

Contribution#1: Novel Hierarchical Bayes algorithm via Probabilistic Graphical 
Extension of Compound Gaussian (CG) model

#2: Fast algorithmic extensions

In this talk we focus on novel techniques of solving for 𝒄 in (1):
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Sparsity Inducing Priors

• Consider a Bayesian-MAP Formulation:
𝒄∗ = 𝐚𝐫𝐠𝐦𝐚𝐱

𝒄
𝐥𝐨𝐠𝑷 𝒄|𝒚 (2)

∝ 𝒂𝒓𝒈𝒎𝒂𝒙
𝒄

𝒍𝒐𝒈𝑷 𝒚|𝒄 + 𝒍𝒐𝒈𝑷 𝒄 (3)

= 𝐚𝐫𝐠𝐦𝐢𝐧
𝒄

𝒚 − 𝜳𝜱𝒄 𝟐
𝟐 − 𝒍𝒐𝒈𝑷 𝒄 (4)

where, in (4) we assume that 𝒗~𝓝 𝟎, 𝜮𝒗

• For the specific choice 𝑷 𝒄 ∝ 𝒆𝒙𝒑 −𝝀 𝒄 𝟏 i.e. Laplacian 
distribution, (4) reduces to: 𝒄∗ = 𝒂𝒓𝒈𝒎𝒊𝒏

𝒄
𝒚 −𝜳𝜱𝒄 𝟐

𝟐 + 𝝀 𝒄 𝟏 (5)

which is the well known 𝒍𝟏 sparsity promoting optimization 
problem

• Thus sparsity promoting algorithms such as (5) can be viewed a 
special cases of Bayesian inference algorithms wherein sparsity-
inducing priors such as Laplacian distributions are incorporated
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In Search of Richer Priors

• From our experience, the Laplacian is not a rich enough prior for 
modeling radar and natural images. In search of richer priors we 
choose to build upon the so-called CG (Compound Gaussian) 
distribution
‒ The Compound Gaussian (CG) is a special type of compound 

distribution whose structure is as follows:

𝑷 𝒄 = 	∫ 𝟏
𝟐𝝅� 𝜮 𝒛

𝒆𝒙𝒑 − 𝒄/𝒛 𝑯𝜮h𝟏 𝒄/𝒛�
� 𝑷 𝒛 . 𝒅𝒛 (6)

• Why build upon CG?
‒ Many of the most well known distributions are special cases of CG, 

such as: Laplacian, Gamma, Student, Generalized Gaussian, Pareto, 
Alpha-stable, etc.

‒ It is very convenient to incorporate this within an optimization 
framework via Hierarchical Bayesian modeling



25

Statistics of Coefficient Vector 𝒄	: 
CG Prior Model (Local CG Model)

Figure: Variance-matched Gaussian. (DH/H) = 0.0549 Figure: Variance-matched CG (Compound Gaussian).
(DH/H) = 0.0023

• Let us plot the Histogram of coefficients 𝒄 ∈ ℝ𝒏 for a typical SAR image:

Compound Gaussian (CG) Model of c:

𝒄 = 𝒛⊙ 𝒖 (7)
where:

𝒖	~	𝑵(𝟎, 𝝈𝒖) is a Gaussian r.v.
𝒛	 ≥ 𝟎 is a Non-Gaussian r.v.

1) Estimate vector z
(given c in this case)

2) Normalize vector c:
u(i) = c(i) / z(i)
(for each vector      
component i)

3) Plot Histogram of u and 
its Best Gaussian Match  
(shown in Red Font)

Histogram of Wavelet 
Coefficients c

Best Gaussian Match

Calculate Wavelet Coefficients of the SAR 
Image and plot its Histogram (shown in Blue)
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Local Image Statistics
q Consider the local image statistics of a SAR image

𝒄𝒊~𝑧$𝒖𝒊

q The vector of the ith neighborhood coefficients can be written as
– is a non-negative, random scalar   
– has pmf
– 𝒖𝒊~𝒩 0, Σv

Fig. Neighborhood of 
Wavelet Coefficients

Fig. Histogram of Wavelet 
Coefficients of a SAR 
Image

Fig. Histogram of 
corresponding z-Normalized
Wavelet Coefficients
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• The CG distribution can be generalized in different directions:
1. Analytical Generalization of CG:

‒ Non-linear CG (NCG) distribution [Raj et. al. 2012]

2. Graphical Extensions of CG      [Wainwright et. al. 2001]
‒ This will be used in our global image formation algorithm…

Generalizations of CG
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Source Statistics: Global CG Model

Figure: Quad-tree structure that captures the non-Gaussian
interaction between wavelet coefficients across scales.

Global Compound Gaussian (CG) Model:

• The need for a Global CG Model for Imaging Applications:
– Local CG model such as shown in the previous slide do NOT capture (non-

linear) spatial correlation information of wavelet coefficients

– The critical step is to estimate the non-Gaussian z- field:
• For imaging applications, unlike the previous slide, the wavelet coefficients are 

completely inaccessible. Local CG model does NOT allow z-field to be estimated 
in such cases.

• A Global CG model models the non-linear statistical interactions of coefficients 
across scale and space (via a Probabilistic Graphical Model). Exploiting this 
information (~nonlinear covariance model) allows us to estimate the z-field.

We model 𝒄 as a random vector that can be decomposed into the following (Hadamard) product form:

𝒄 = 𝒛⊙ 𝒖
such that:
1) 𝑢	~	𝒩 0, 𝑃v , 𝑧 = ℎ 𝑥 , 

and 𝑥 follows a Multi-scale Gaussian Tree structure
2) 𝑢 and 𝑧 are independent random variables
3) 𝔼 𝑧| = 1
4) ℎ is a non-linearity (which ultimately controls the 

sparse structure of 𝑐)
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Graphical Extensions of CG:
Tree-based CG model

• The CG models we have considered thus far is a local-patch
based model i.e. it captures the statistics of local neighborhoods
of an image under i.i.d. sampling
‒ Can be employed in local-patch based image reconstruction

• However such models do not model the global structure of
images
‒ Hence are unsuitable for Global image estimation

• For global reconstruction strategies for images, we need a global
statistical model for the image that is locally consistent with CG
‒ This can be accomplished via Probabilistic Graphical Model

Extensions of the CG distribution
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Quick Overview of 
Probabilistic Graphical Models

• (Undirected) Graph: 𝓖 = 𝓥, 𝓔 is defined by a set of nodes 𝓥 = 𝟏,⋯ , 𝒏 ,
and a set of edges 𝓔 ⊂ 𝓥

𝟐
• Graphical Model: Random vector defined on a graph; nodes represent

random variables, edges reveal conditional dependencies

• Graph structure defines factorization of joint probability distribution

	𝒙𝟏

	𝒙𝟐 	𝒙𝟑

	𝒙𝟒 	𝒙𝟓 	𝒙𝟔 	𝒙𝟕

Figure: Tree – acyclic graph with n nodes and (n-1) edges (here, n=7)

𝑃 𝑥 = 𝑃 𝑥; 𝑃 𝑥||𝑥; 𝑃 𝑥�|𝑥; 𝑃 𝑥�|𝑥| 𝑃 𝑥�|𝑥| 𝑃 𝑥�|𝑥� 𝑃 𝑥�|𝑥�

• Given a graphical model very efficient algorithms (such as Message
Passing) exist for making statistical inferences on such graphs
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Graphical CG Model
• The specific model that we use for modeling Global CG:

𝒄 = 𝒛 • 𝒖
where, 𝒖	~	𝓝 𝟎, 𝑷𝒖

𝒛 = 𝒉 𝒙
𝒖 and 𝒛 are independent random variables
𝔼 𝒛𝟐 = 𝟏 (i.e. variance of 𝒄 is controlled by 𝒖: 𝒖 𝒔 = 𝟐h𝜸𝓝 𝟎, 𝑰

and where, 𝒙	~ Multi-scale Gaussian Tree structure
𝒙 𝒔 = 𝑨 𝒔 𝒙 𝒑𝒂𝒓(𝒔) + 𝑩 𝒔 𝒘(𝒔) 𝑷𝒙 𝒔 = 𝑨 𝒔 𝑷𝒙 𝒑𝒂𝒓(𝒔) 𝑨 𝒔 𝑻 + 𝑸(𝒔)

• In our simulations we instantiated the Graphical CG model as follows:
1. We employed the following non-linearity in our simulations: 𝒉 𝒙 = 𝒆𝒙𝒑� 𝒙/𝜶
where, 𝛼 controls the sparsity-level in the generated signal: smaller the 𝛼, sparser the signal

2. We set 𝐴 ≡ 𝝁 and 𝐵 ≡ 1 − 𝜇|� ⇒ 𝑃� 𝑠 = 𝐼¡ ∀𝑠.
Given this the entire covariance matrix corresponding to the Gaussian process 𝑷𝒙 𝒔, 𝒕 , ∀𝒔, 𝒕 can
be calculated by a simple set of recursive equations

3. Thus 3 parameters are associated with the Graphical CG model:

𝜶 (controls sparsity)
𝝁 (controls inter-scale dependency structure)
𝜸 (controls distribution of variance (power) across scales)… (currently in our simulations we set 𝜸=0)
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Mapping Image Space to Graphical Models

(Figure taken from [Wainwright et. al. 2001])
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• We focus here on the Global image reconstruction problem:
i.e. estimate c given measurements y

𝒚 = 	𝜳𝜱𝒄 + 𝒗 = 	𝜳¤𝒄 + 𝒗 (8)
‒ We employ the Tree-based CG Graphical model as our Global

Prior on the unknown coefficients c
o The CG model subsumes Laplacian and other distributions as special

cases

• Due to the presence of the integral structure in the CG pdf
expression, it is difficult to optimize with respect to the
complete Graphical CG prior model
‒ Therefore we approach this via a Hierarchical Bayes-MAP

perspective wherein we first estimate the optimum 𝒛- field (i.e.
Type-II estimation) followed by estimation of the optimum 𝒖-
field (i.e. Type-I estimation)

Hierarchical Bayesian Algorithms for Imaging [1-2]

[1] R.G. Raj, "A Hierarchical Bayesian-MAP Approach to Inverse Problems in Imaging," Inverse Problems, vol. 32, no. 7, July 2016.
[2] R.G. Raj, "Hierarchical Bayesian-MAP Methodology for Solving Inverse Problems," U.S. Patent 9,613,439, April 04, 2017.
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Novel Hierarchical Bayesian-MAP Algorithm for Imaging

• Our high-level pseudo-code is as follows:
1. Initialize parameters 𝜶 and 𝝁
2. Perform Type-II estimation to obtain 𝒛¥, the MAP estimate of 𝒛
3. Given 𝒛¥ perform approximate EM algorithm to estimate the optimum

parameter 𝝁
4. Iterate between Steps 2-3 until convergence
5. Perform Type-I estimation to obtain 𝒖¦, the optimum estimate of 𝒖
6. The optimum estimate of the image is 𝑰§ = 𝜱𝒄¥, where 𝒄¥ = 𝒛¥. 𝒖¦

• In our work we derive novel equations and algorithms for Type-I and
Type-II estimation for solving (8)
– For Type-II estimation we employ a Steepest Descent approach to

calculate the z- field. We do this in a couple of ways:
1) Newton method: Computationally intensive but Best results
2) Gradient method: Sub-Optimal but computationally more efficient

– For Type-I estimation: It turns out that sparsity of the z-field must be
explicitly exploited
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Type-II Estimation
• Since we are modeling 𝑧 as h 𝑥 (where h is a nonlinearity and x
follows a Gaussian Tree- structured distribution), it suffices to estimate
the x field given the measurements y

• We can easily show that the optimum x can be determined as
follows:

𝑥∗ = 	𝑎𝑟𝑔min
�

𝑦±(𝑀�)h;𝑦	 + 𝑙𝑜𝑔𝑑𝑒𝑡(𝑀�) + 𝑥±(𝑃�)h;𝑥 (9)
=	𝑎𝑟𝑔min

�
𝑓 𝑥

where,𝑀� = 𝐴�𝑃v 𝐴� ± + Σ¹
𝐴� = Ψ¤Λ�
Λ� = 𝑑𝑖𝑎𝑔(ℎ(𝑥))
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Type-II Estimation (2)
• This leads to the following Steepest-Descent algorithm for calculating
the optimum x- field:
1. Initialize x:

First set	𝑥½ = 	ℎh; Ψ¤±𝑦
Thereafter we perform Kalman smoothing of 𝑥½ w.r.t. the Gaussian Tree
structured model with parameters A and B

Initialize 𝑛 = 0
2. Calculate the descent direction 𝑑¿ either by Gradient descent or Newton
Descent methods; where:

𝑑¿ = −𝛻𝑓 𝑥¿ for Gradient Descent
𝑑¿ = − 𝛻|𝑓 𝑥¿ h;𝛻𝑓 𝑥¿ for Newton Descent

3. Update the x-field:
𝑥¿Á; = 𝑥¿ + 𝜆𝑑¿

where 𝜆 is chosen by a line search
4. Repeat Steps (1)-(2) until convergence
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Type-II Estimation (3)

• Gradient Equation:
𝛻𝑓 𝑥 = 2(𝑃�)h;𝑥 + 𝐺� 𝑣𝑒𝑐 𝑀�

h; − 𝑀�
h;𝑦 ⊗ 𝑀�

h;𝑦 (10)
where,

𝐺� =
Ç¹ÈÉ ÊË

Ç�
𝑃v𝐻� ⊗ 𝐼¿ 	+ 𝐼¿ ⊗ 𝑃v𝐻� Ψ¤ ± ⊗ Ψ¤ ±

• Hessian Equation:
𝛻|𝑓 𝑥 = 2(𝑃�)h;+	𝐿 𝑥 + 𝑄 𝑥 (11)

where,

𝐿 𝑥 = Ç¹ÈÉ ÏË
Ç�

𝑣𝑒𝑐 𝑀�
h; ⊗ 𝐼¿ 	− 𝐺� 𝑀�

h; ⊗ 𝑀�
h; (𝐺�)±
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Type-II Estimation (4)

• Hessian Equation (contd.):
𝑄 𝑥 = −Ç¹ÈÉ ÏË

Ç�
𝑀�

h;𝑦 ⊗ 𝑀�
h;𝑦 ⊗ 𝐼¿

+𝐺� Ð 𝑀�
h;𝑦 ± ⊗ 𝑀�

h; Ñ 𝑀�
h;𝑦 ± ⊗ 𝐼Ò

+	 𝑀�
h;𝑦 ± ⊗ 𝐼Ò 𝐾ÒÒÔÕ 𝐺� ±

𝜕𝑣𝑒𝑐 𝐺�
𝜕𝑥 = 𝐸� Ψ¤ ± ⊗ Ψ¤ ± ⊗ 𝐼¿
𝐸� =

𝛻|𝐻� 𝑃v𝐻� ⊗ 𝐼¿Ø +	𝐼¿ ⊗ 𝑃v𝐻� ⊗ 𝐼¿
+

𝛻𝐻� 𝐼¿ ⊗ 𝑃v𝐾¤¿¿ +	 𝐼¿ ⊗ 𝑃v ± 𝐾¤¿¿ ⊗ 𝐼¿ 𝐼¿Ø ⊗ 𝛻𝐻�±
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• Comments on Type-II estimation
o In implementing the Gradient and Hessian equations one must pay
special attention to the sparsity structure of the matrices involved so
that the computations can be performed efficiently and with low storage
ØBrute force implementation is infeasible—storage for intermediate
matrices on the order to 1 to 10 million TB for a 64x64 image

o We employed the following non-linearity in our simulations
ℎ 𝑥 = 𝑒𝑥𝑝� 𝑥/𝛼

where, 𝛼 controls the sparsity-level in the generated signal: The
smaller the 𝛼, the sparser the resulting signal

This choice of non-linearity gives us good control over the sparsity
levels in a tractable manner
NOTE: Our approach in general is not limited by the specific choice

of ℎ 𝑥

Type-II Estimation (5)
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• Here we calculate the optimum 𝑢- field given the 𝑧- field estimated by
the Type II procedure. We can easily show that the corresponding
Bayesian MAP formulation approximately leads to the following
equation to be solved for 𝑢:

ΛÚÛ(Ü) Ψ¤ ±Λ;Ψ¤ + Λ| ΛÜ𝑢 = ΛÚ(Ü)Ψ¤Λ;𝑦 (12)

where,
ΛÜ = 𝑑𝑖𝑎𝑔(𝑧)	

ΛÚÛ(Ü) = 𝑑𝑖𝑎𝑔(𝐼Ý(𝑧)), where 𝐼Ý 𝑧 = 	 𝑧 𝑖𝑓	𝑧 ≥ 𝜏
0 𝑒𝑙𝑠𝑒

q The above is analogous to a weighted 𝑙;- shrinkage procedure where the
optimum weights are furnished by the 𝑧- field estimated by the Type II
procedure.

Type-I Estimation
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HB-MAP w.r.t. Oracle: Imaging

𝚿: Sampling Operator

Our Algorithm

Figure.
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HB-MAP w.r.t. Oracle: Compressive Sensing

Figure.

Our Algorithm

𝚿: Gaussian Noise
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Performance on Empirical Data:
15 Angles

Tomographic 
sampling operator:
Radon transform at a 
Sparse number of 
angles
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Performance on Empirical Data: 
10 Angles
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Performance on Empirical Data:
6 Angles
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• Key problem: To alleviate the computational complexity of the 
Gradient HB-MAP (gHBMAP) and Newton HB-MAP (nHBMAP) 
algorithms 
– Observation: The Type-II objective is the computational bottleneck

• Thus Type-II is the main focus of our work [1]

• Consider again the Type-II estimation objective function to be 
maximized:

𝑓 𝑥 = 𝑓;(𝑥) +	𝑓|(𝑥) +	𝑓�(𝑥) (13)
where:

𝑓; 𝑥 = 	𝑦±𝐵(𝑥)h;𝑦
𝑓| 𝑥 = log	det	B(x)
𝑓� 𝑥 = 𝑥±Σ�h;𝑥

Such that: 𝐵 𝑥 = 	𝜎v|	𝑋±𝐻| 𝑥 𝑋 + 𝜎é|𝐼
𝐻 𝑥 = 𝑑𝑖𝑎𝑔 ℎ(𝑥) ; 𝑋 = 	ΨΦ	

Fast Stochastic Algorithm for Imaging [1]

[1] J. McKay, R.G. Raj, and V. Monga "Fast Stochastic Hierarchical Bayesian MAP for Tomographic Imaging," Accepted into the 
Proceedings of IEEE Asilomar Conf. on Signals, Systems and Computers, 2017.
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Fast Stochastic Algorithm for SSRI (2)
• The key technical issues revolve around ameliorating the numerical 

tractability of 𝑓; and 𝑓|

• We can obtain the following numerical simplification of 𝑓|:
𝑓| 𝑥 = log	det	B(x)

≥ 𝑑𝑒𝑡 𝜎v|	𝑋±𝐻| 𝑥 𝑋 + 𝑑𝑒𝑡 𝜎é|𝐼 (Minkowski inequality)
≥	∑ �ì

í
¿
$î; + 𝐾 (where K is independent of 𝑥)

⟹ Thus we can maximize 𝑓|¤ 𝑥 = ∑ �ì
í

¿
$î; instead

• On the other hand, 𝑓; 𝑥 = 𝑦±𝐵(𝑥)h;𝑦 reveals no readily actionable
(convex) approximation
– Our approach is to avoid gradient calculations altogether by invoking a

stochastic approximation (SA) approach
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Brief overview of SA
• The particular SA approach that we will be considering is Simultaneous

Perturbation SA (SPSA):
– The key idea in SPSA (and related approaches such as Finite

Difference SA (FDSA)) is to start with finite difference approximations
(for e.g. of the gradient) and to incorporate probabilistic theories to
reduce computations [1-2]

• For SPSA the idea is to modify the update step of a gradient descent
algorithm for gradient descent algorithm as follows:

𝑥ïÁ; = 𝑥ï 	− 𝛼ï𝑔ð(𝑥) (14)
where 𝑔ð(𝑥) is a gradient approximation:

𝑔ð 𝑥 = 	 ;
Éñ

𝑓 𝑥 + 𝑐ïΔï − 𝑓 𝑥 − 𝑐ïΔï ⊘ Δï
such that: Δï	~	symmetrix ± Bernoulli distribution

⊘ ~ pointwise division operator
𝑐ï > 0 is a small value that decreases to zero as 𝑘 → ∞

[1] J.C. Spall, “Multivariate stochastic approximation using a simultaneous perturbation gradient approximation,” IEEE transactions on automatic control, vol. 37, 
no. 3, pp. 332–341, 1992.

[2] J.C. Spall, “An overview of the simultaneous perturbation method for efficient optimization,” Johns Hopkins APL technical digest, vol. 19, no. 4, pp. 482–492, 
1998.
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• Our resulting algorithm, of incorporating SA into Type-II estimation,
is called Fast Stochastic HB-MAP (fsHBMAP):
1. Initialize parameters
2. Perform SPSA based Type-II estimation to obtain 𝒛¥ , the MAP

estimate of 𝒛
3. Perform Type-I estimation to obtain 𝒖¦, the optimum estimate of 𝒖
4. The optimum estimate of the image is 𝑰§ = 𝜱𝒄¥, where 𝒄¥ = 𝒛¥. 𝒖¦

• As before:
– Hierarchical Bayesian structure is encapsulated within the above CG

based framework
– The CG prior in our framework reduces to Laplacian (i.e. 𝑙;) and other

priors (such as spike-and-slab, Generalized Gaussian etc.) with suitable
choice of non-linearity in our model

– Our framework is not limited by the choice of dictionary or sensing
matrix

fsHBMAP Algorithm
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Illustration of Computational Speedup

Figure.We took random initial values of x for a 16x16 image
snippet of the Barbara image—sampled by the radon transform
at 18 angles—and performed SPSA iterations in 10 trials.
• In every case incorporating SPSA iterations was not only able
to decrease the Type-II objective function but also in a way that
improves overall image quality (as measured by SSIM)

• Top Panel: Wavelet dictionary
Bottom Panel: DCT dictionary
Mean fsHBMAP completion times (seconds) are given for wavelets

Figure.

fsHBMAP is much more
amenable to being applied to
large scale imaging problems
because–unlike gHBMAP or
nHBMAP–no explicit gradient or
Kronecker calculations are
involved.
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fsHBMAP Performance

Tomographic 
sampling operator:
Radon transform at a 
Sparse number of 
angles

Traditional 
Backprojection based 
imaging performs 
poorly for a sparse 
aperture: SSIM ~ 0.6
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Ongoing Investigations
• Detailed analysis of performance in Compressive

Sensing applications

• Detailed analysis of different choices of non-linear
models (i.e. prior distributions) matched to different
application domains (such as Radar, Sonar)

• Extension to Deterministic Compressive Sensing
matrices and Complex sensing matrices
– Applications to Radar Imaging [1-2] and Sonar

Imaging
[1] R.G. Raj, R.W. Jansen, M.A. Sletten, "A Sparsity based approach to Velocity SAR Imaging," IEEE Radar 

Conference 2016
[2] S. Samadi, M. Çetin, and M. A. Masnadi-Shirazi, “Sparse representation-based synthetic aperture radar 
imaging,” IET Radar, Sonar Navigat., vol. 5, no. 2, pp. 182–193, Feb. 2011
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Discussions
• Thus far we have:

‒ We have shown how state-of-the-art imaging results can be achieved via
systematically exploiting hierarchical Bayesian prior models

‒ We have explored novel methods for Image formation
‒ We have developed novel Bayesian models for (radar) signal processing

applications

• Some of the Future Work stemming from this includes:
‒ Systematically applying these computational tools in different

application domains such as SAR, ISAR, Sonar imaging.
‒ Rigorously investigating theoretical bounds for our Bayesian image

formation algorithm (HB-MAP)
‒ Application of novel waveform designs in conjunction with our optimum

reconstruction algorithm
‒ Extension to more general graphical structures and dictionaries
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